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Abstract The anal) SiS or an axially compressed circular tube deforming in progressive axi­
symmetric folds carned out hy Wierzbicki el 01. [( 19'J2) Inl. J. Solids S'ruc(urcs 29,3269-3288]
assumes an eccentriclt\ factor relating the inward and outward parts of the folds. This factor was
arhitrar\ and was not dem'ed rrom the analysis. The present work re-examines the problem and
produces a \'alue ror the eccentncity factor which conrorms with the experimental findings. Values
of the critical angles required for the formation of the inward and outward folds ohtained from the
analysis were suhstantlated hy those ohtained from experiments.

I. INTRODlCTJO'\J

The classical problem of cylinders and tubes subjected to gross axial compression is of
technological interest. for example in the design of impact energy absorbing elements.
Numerous papers have been published on various aspects of the problem. An excellent
review of the literature on the plastic crushing behaviour of a tube has been given by Jones
(1989). When a short cylindrical tube is axially compressed beyond the elastic range
(Mallock. 1908: Coppa. 1962: Horton ('( al., 1966: Allan, 1968: Johnson, 1972: Johnson
cr al., 1977: Sobel and Newman. 1980: Andrews cr al., 1983), it will progressively fold into
either axisymmetric concertina (ring) type folds or diamond shaped folds depending on its
diameter to wall thickness (Dr) ratio. Relatively thicker tubes generally deform into
axisymmetric folds and thinner tubes exhibit diamond type folds. Some tubes start deform­
ing into axisymmetric folds but then revert to a diamond mode as collapse progresses. The
reverse of such a phenomenon has not been observed. This study will focus only on tubes
deforming into concertina folds.

The first fold almost always forms at one of the two ends of the tube and is facilitated
by a radially outward movement. the magnitude of which is a function of the distance from
the edge of the tube. A plastic bending hinge (or more correctly a plastic zone) appears at
a certain distance from the end of the tube. This distance is dictated by the tube geometry
and is usually of the order of oJ Rr where R is the radius of the tube. In a fixed boundary
condition, a tube with welded ends for instance. a plastic bending hinge will also appear
near the fixed edge. On the other hand. no such edge hinge appears in the formation of a
fold for simply supported tubes. In either case, the ends of the tube are radially restrained.

For a tube compressed between two flat plates. a semi-free boundary condition exists.
In the initial stages of compression, the tube behaves as if its edges are fixed because of the
square end faces and the influence of friction between the surfaces in contact. As loading
progresses. radially inward forces are generated by the hoop expansion of the radially
outward moving parts of the tube. When these forces are large enough to overcome the
forces due to friction between the tube and the platen, the edge region undergoes radially
inward movements. The mechanism of the initiation of the first fold is the same regardless
of the edge conditions. However. the development of the first fold and hence the load­
compression history during the folding process will depend on the edge conditions. Never­
theless. the formation of the subsequent folds and the further progressive crush behaviour

t Permanent address Mechanical Engineering Department. College of Engineering. University of Bahrain,
P. O. Box 3203g. Manam,l. Bahram.

I Crown copyright i 1995)



3590 A. A. Singace et al.

p

(a) (b)

2

I
22

F

B

D

(c) (d)

Fig. 1. Different failure mechanisms proposed to model the concertina mode due to: (a) Alexander
(1960). (b) Abramowicz and Jones (\986): (c) Grzebieta (1990): and (d) Wierzbicki et al. (\992).

of the tube become independent of the edge conditions after the first fold has completely
flattened.

In any given fold, the outer portion of a typical region of the tube's wall bound by two
successive circumferential plastic hinges experiences radially outward movement, while the
inner portion undergoes radially inward movement, unless such movements are constrained
as described by Ahmed (1990). In an unrestrained tube subjected to axial loading and
deforming in a concertina mode, a larger portion of a typical fold exhibits an outward
motion than that moving inwards.

In the early analysis by Alexander (1960) of an axially compressed tube, the material
was assumed to be rigid perfectly-plastic, and the tube was assumed to undergo axi­
symmetric folding. Alexander considered a general fold, other than the one near the edge
of the tube [see Fig. I (a)], and produced an upper bound solution for the mean crushing
load assuming that folding is facilitated by a kinematic mechanism with three cir­
cumferential plastic hinges. The region between the extreme hinges was assumed to move
either completely outwards or completely inwards, exhibiting plastic stretching (or com­
pression) in the hoop direction. By minimizing the work carried out to deform one fold,
the distance between two adjacent plastic hinges was obtained as -.JDt. Amdahl and
Soreide (1981) used rate equations for the outward folding mechanism of Alexander's
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model and derived the load deflection history during a fold cycle As a perfectly straight
tube was considered to start with. the load for initiating the fold turns out to be infinite in
this analysis.

A more rigorous analysis by Andronicou and Walker (1981). where the von Mises
yield condition was employed. considering the interaction between axial bending and
circumferential stress resultants for the formation of the first hinge. In this study. the fully
plastic bending moment and the distance between plastic hinges become dependent on the
axial force. Simply supported as well as built-in edge conditions were considered. It is
shown that the initial peak load is independent of the edge condition and that the load­
tube shortening histories are different for the two edge conditions. At a given deformation.
a tube with fixed edges has three bending hinges in the folding mechanism and hence
requires a larger compressive force than that needed by an identical simply supported tube
wherein only two circumferential plastic hinges form.

A more realistic radially outward folding mechanism was formulated by Abramowicz
and Jones (1984. 1986). Wierzbicki and Bhat (1986) and Grzebieta (1990). In the first study.
Abramowicz and Jones assumed that the region between the plastic hinges which undergoes
hoop expansion in Alexander's model will have two equal parts of the same curvature but
of opposite sense. Fig. I (b). Only the calculation of the mean load was addressed in their
analysis. Wierzbicki and Bhat employed a moving hinge mechanism starting from each end
of the fold length. Grzebieta. hovvever. assumed that the two curved regions are separated
by a straight region where each region is one-third of the fold leg length. see Fig. I(c).
Considering the interaction between the axial bending and the circumferential stretching
stress resultants. Grzebieta obtained the mean crushing load as well as the load compression
history during one fold cycle. In all these models. only radially outward folding is assumed.

A more recent study of the problem was carried out by Wierzbicki et at. (1992)
where a new approach to the representation of the concertina collapse mode of tubes was
introduced. The authors used a model based on the assumption that crushing progresses
by virtue of instantaneous formation of three stationery plastic hinges leading to a fold
comprised of two elements of eq ual lengths. As the fold develops. the mechanism allows
both inward and outward radial displacements of the tube generator according to a certain
ratio. This ratio. denoted by m. represents a geometric eccentricity factor which has not
been introduced in earlier publications. The load~ompressionhistory as well as the mean
load have been analysed. This model will be discussed further in the following section.

The introduction of the eccentricity factor. 111. in the analysis leads to the successful
qualitative reproduction of many of the features characterizing the physical behaviour of
tubes folding in a concertina mode. However. in the analysis developed by Wierzbicki et
at. (1992). the value of 111 was arbitrary and indeterminate. This drawback withheld further
clarification of additional characteristics which was not explicitly mcntioned in their paper.
These include in particular the critical inclination angles of the folding elements cor­
responding to inward and outward folds. However. Wierzbicki et at. (1992) carried out the
analysis for arbitrary values of III and proceeded to develop a superfolding element model
for the problem.

In this paper. using a rigid perfectly-plastic material. Wierzbicki's stationary plastic
hinge model is taken one step further and. following the same basic procedure. definite
values for the eccentricity factor. 111. and the critical angles for the formation of the inward
and outward folds are derived. The value of 111 obtained from the analysis agrees with the
experimental observations. Some thoughts on the initia I folding of a tube that are applicable
to all edge conditions are presented. The scope of this paper is confined to the derivation
and discussion of the eccentricity factor. although it can be extended further to obtain the
load-displacement history during a fold cycle .

.2 DETAILS OF THE MODEL

2.1. Initiation olIo/ding process
Understanding the process of formation of the first fold is crucial for modelling

subsequent folds. While a rigorous analysis of the formation of the first fold will not be
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Fig. 2. The development of the initial (outward) fold in an undeformed tube: (a) undeformed tube;
(b) start of the first fold; (c) intermediate stage in the first fold; and (d) completion of first outward

fold, critical position for the first inward fold.

addressed in the present study, this main physical feature, based on experimental obser­
vations, will be used to establish the continuity of the crushing process with each subsequent
fold. Experiments show that the first fold will always form with an outward buckle. The
process is depicted qualitatively in Fig. 2. Photographs of sectioned specimens (a typical
one is portrayed in Fig. 3) were used to obtain the straight line segments that show how
the formation of the first fold progresses. It is to be noted, however, that once the first fold
has been formed, critical angles, IXo and /30' necessary for the definition of the inward (see
Fig. 4) and outward folds (see Fig. 5), respectively, will appear in the analysis of the
concertina mode of failure.

Friction effects, and geometric and material imperfections, play an important role in
the formation of the initial buckle. As the tube is compressed, its wall tends to move radially
outwards, due to a Poisson effect and axial shortening; however, the radially outward
sliding movement of the ends of the tube is resisted by virtue of frictional forces between
the testing machine platens and the ends of the tube. This will result in the ends of the tube
lagging behind the rest of the tube wall and hence the initiation of the first outward buckle.
As the fold leg adjacent to the platen bends, it reaches a critical angle, yO' at which point a
circumferential plastic hinge is created to facilitate axial bending and hence fold formation.
Deformation continues with Yo diminishing to zero while the second leg of the fold will
acquire a rotation to reach a critical value 'low As collapse progresses (i.e. Yo ---> 0), the end
of the tube slides inwards from its initial position (thus undergoing compression) until it is
completely flat, lying partly to the outside and partly to the inside of the tube generator.
The fractional length of the leg to the outside of the tube generator is Wierzbicki's eccen­
tricity factor m, mentioned earlier.

The minimum leg length for a concertina fold is what is usually termed the plastic fold
length and is shown to be approximately equal to JDr by Alexander (1960). We represent
this by HAlex • and it is equivalent to 2H in this paper. The plastic fold length HAlex has been
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Photographic vievv of the cross-section of a tube deformed to the critical position for the
formation of the initial fold (outward).

A photographic image of a tube, compressed up to the start of the second inward fold, used
to obtain the values of IJI and ~,

Photographs showing the aluminium tube deformed up to the start of: (a) first outward
fold: (b) first im\ ard fold: (c) second out" ard fold: and (d) second inward fold.
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Fig. h. Load-deflection curve for the axial compression test for an aluminium alloy tube of 50 mm
outside diameter and 1.6 mm thickness (concertina mode). Inset is the tube compressed up to the

fourth inward fold.
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Fig. 4. The formation and progression of the first inward fold (phase I, second fold) : (a) completion
of the first fold; and (b) first phase of the second fold.
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Fig. 5. The transition between the first inward and the subsequent outward fold (phase 2, second
fold): (a) completion of first phase of the second fold; and (b) second phase of the second fold.

verified experimentally and is the greatest strength of Alexander's analysis. Experimental
measurements will be presented later.

2.2. Subsequent folding
As this end fold is completed, i.e. Yo has diminished to zero, etm which characterizes the

critical position for the next fold, is reached (Fig. 2). Further deformation is possible with
the development of a new plastic hinge, point 3 in Fig. 4(a). The progressive collapse
mechanism that causes deformations from this point onward are as described in detail by
Wierzbicki et al. (1992). The angle r:t. will diminish as the collapse progresses with the
continuing deformation of this inward fold, with the completion of which another angle,
associated with the formation of the next outward fold, will acquire a value of Po. The
growth of the second and the third folds is shown in Figs 4 and 5, respectively. The
completion of an inward fold will result in the formation of the adjacent outward one and
so on.

Global energy balance will be used and the sum of the plastic bending and stretching
energies will be equated to the work done by the applied force to produce an expression
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for the mean crushing load Pm. The expression for Pm contains the fold length 2H and the
eccentricity factor m, which are obtained through the minimization procedures.

3. ANALYSIS

3.1. Bending energy
In any given cycle of deformation representing a complete fold, the bending energy

term is comprised of two parts; one associated with inward folding, controlled by a change
in a (Fig. 4), and the other associated with outward folding, controlled by a variation in 13
(Fig. 5). The selection of representation of a and 13 is arbitrary as the two angles are
interchangeable.

In the first phase of collapse, the two elements of the fold will be hinged at three
circumferential sections, I, 2 and 3 in Fig. 4(b). The eccentricity factor, m, is related to the
critical angle, ao , in this phase as follows:

cos ':x 0 = m. (1)

From the same figure. the compatibility relationship between a and 13 can be shown to be

and their rates are related by

cos 13 = cos :x - cos ao

cosf> = cosa-m

sin arX
~=-----

)[I-(cosa-m)]

(2)

(3)

The vertical displacement of the end of the tube, t5J, defined from the reference position
shown in Fig. 4(b), is given as

t5 1 = 2H( 1+ sin:xo - sin a - sin 13)

and its rate obeys the equation:

~ 2H(cos:xi + cos 13(3).

The rate of bending energy, Eb , is given by:

(4)

(5)

(6)

where M o = (Jo(2/4 is the fully plastic bending moment per unit circumferential length, (Jo

is yield stress and ( is the tube thickness. R; and 8; are radial distance and the relative rates
of rotation, respectively, at the ith hinge. These are given as

R , = R+2mH

82 = i+~ R 2 = R+2mH-2Hcosa

8] = - P R] = R.

Thus rate of bending energy in the first phase becomes

E~ = 2nMo {(R+2mH)lil + (R + 2mH-2Hcosa)li+ PI + RIPI}.

(7)

(8)

Using eqns (2) and (3), eqn (8) can be integrated over the duration of the folding cycle and
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the bending energy will be obtained. For this first phase of the folding cycle, ex wiIl vary
from aD to 0, while /3 changes from 71/2 to fJO' Because it is a single-degree-of-freedom
system, one of the two angles could be used as the control parameter to represent the whole
system. Representing this first phase of the fold by \/., the bending energy is given by:

E~ = 4nMo {(R+2mH)ao + Hsin ao -H[~(2m-m2) -I] +R sin- 1(I-m)}. (9)

During the second phase of folding (see Fig. 5) the eccentricity is defined as n = 1- m and
the radii of the plastic hinges are not equal to those in the first phase. Similarly to the first
phase, the eccentricity factor, n, is related to the critical angle (30 as follows:

cos [30 = I -m = n.

From Fig. 5, geometric compatibility produces the relationship between a and /3 as

cos fJ = cos a+ n

and their rates obey the equation

. sin fl(Ja = -_.._._- -.

~[I- (cos fJ-n)]

The end shortening of the tube in this phase is defined as [see Fig. 5(b)]:

62 = 2H(1 +sinfJo-sin[3-sin\/.)

and its rate is given as :

For this phase, ()j and R j in eqn (6) can be written as

OJ = P R J = R-2nH

02=(J+'i R 2 =R+2Hcosa

= R-2nH+2Hcos(3

e, = -'i R, = R

and the rate at which the bending energy is dissipated, i.e. eqn (8), can be written as

(10)

(11 )

(12)

(13)

(14)

(15)

E~J = 2nMo{(R-2nH)I(JI+(R-2nH+2Hcos[3WI.+/JI+Rlcil}. (16)

Considering the angular variation in fJ as the control angle and integrating between /30 and
0, the bending energy in the second phase is given by the expression:

E~I = 4nMo {(R - 2(1-m)H)/3o + H sin /30 + H(JI _m2-I) + R sin -I (m)}. (17)

The total bending energy Eb for the full fold is found by summing eqns (9) and (17). Hence:

Eb = 4nMo{([R+2mH]a()+Hsinao-H~(2m-11l2)+Rsin- 1(1-m»

+ ([R - 2(1-m)H]/3o + H sin flo + H~ (1- m 2) + R sin -I (m»}. (18)
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The critical angles, (,(0 and {30, can be replaced by the eccentricity factor, m, from the
geometrical relations

coscx.o = m and sincx.o = .j(I-m2
)

cos{3o = l-m and sin{3o = .j(2m-m2
).

The expression for Eb can be written as

(19)

Eb = 4nMo {([R+ 2mH] cos 1 m+2H.j(I-m 2
) + R sin -I (l-m))

+ ([R- 2(I-m)H] cos- 1(l-m) + R sin-I (m))}. (20)

Thus, the bending energy is a function of the geometric parameters R, t and H as well as
the eccentricity parameter m.

3.2. Membrane energy
The membrane energy terms for the first and the second phases are the same as given

by Wierzbicki et al. (1992). These are given below for completeness. For the first phase, the
first term is

(21)

The second term is given by

(22)

By summing eqns (21) and (22), the total membrane energy term is determined as

(23)

Unlike the bending energy term, the membrane energy term is independent of the parameter
m.

3.3. Expressionsfor Pm' m and H
The total work done by the mean crushing load Pm acting over the two phases of

compression is Pm. 4H. The mean crushing load is calculated from balancing global energy
such that

(24)

Setting i. = RjH, the normalized mean crushing load can written as

or in terms of m,

Pm':F = n{ (i.+2m) cos 1 m+ic sin-I (l-m)+ ().-2(1-m)) COS-I (l-m)
lVl o
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The parameters i. and 111 are as yet unknown. These can be obtained by minimizing Pm! Mo.
Minimization of egn (26) with respect to m produces the following expression:

-2111 (1-111)
-- +cos II1I+COS 1(I-m) = 0

...}(2111-rn 2
)

(27)

which is independent of H. Solving egn (27) using the Newton-Raphson numerical scheme
gives rn = 0.65. Similarly, minimizing egn (26) with respect to H (noting that A = R/H)
gives the following expression:

R
-- 'cos
H 2 I

(28)

Taking into consideration the constant value of 111 defined by egn (27), the folding length,
H, is given by:

H= fl~f[COS II1I+COS 1(1-l1Il+sin Im+sin l(l-m)]} (29)
\j 0

which reduces to

(30)

This is the equivalent expression for H obtained by Alexander (1960).
Inserting the values of Hand minto egn (26), it can be seen that

Pm ,,! f(2R) 1 I" }--=4n'-: +2n[rncos m-(I-I11)cos (l-m)+~(I-rn-)]
M o \; l f /

or

P ('"1R\
---"' = 22.27, - )+5.632.
/'vl" \j f I

(31 )

This expression for the mean collapse load is similar to that given by Wierzbicki ef al.
(1992) except for the constant 5.632.

4. EXPERIMENTAL RESULTS AND DISCUSSION

In order to verify the theoretical value of the eccentricity factor m and the relevant
values of the critical angles 'i.e> and /3", a set of HT-30 aluminium alloy tubes, of 50.8 mm
nominal outside diameter. 1.6 mm thickness and 101 mm in height, were crushed at a rate
of 5 mm min I. All the tubes folded progressively in a concertina mode. The load­
displacement curve of the concertina mode is characterized by alternate high and low load
peaks. A typical curve is shown in Fig. 6. These peaks, marked 0 and I, correspond to the
formation of outward and inward folds, respectively. and hence to the critical angles /30
and :10, The objective of these experiments was to obtain the critical angles exo and /30 by
compressing the tubes to the required deformation level. i.e. up to the peak loads related
to the formation of the folds. These tubes were sectioned (longitudinally) to carry out
measurements to derive representative values for 111, ex" and /30' To obtain the value of m,
the curved length of the folds on either side of the generator were measured after magnifying
the image suitably (sec Fig. 7). To measure :1" and /3 0 , a similar approach was followed in
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Fig 9 Ihc Illad lktlection curves up III the start or: (a) lirst outward fold: (b) first inward fold;
Ic) second llutward fold: and Id) second inward fold.

the rele\ant section of the tube. Figure g shows a photographic cross-sectional view of these
tubes and the load displacement curves for the tlrst four peaks are displayed in Fig. 9. The
respectivc critical inclination angles from the experiments are listed in Table I along with
those calculated using eqn (19). and it may be seen that there is a good agreement between
thc two. Thc value of .,'" measured from Fig. 3 is also shown in the Table. The values of m
were measured for other HT-30 aluminium alloy tubes of different D/t ratios and were
found to be nearly of constant magnitude. These results are shown in Table 2. The values
of H are also shown in these tables and compared with the theoretical values given by eqn
(n). Computation of m. 'l." and It is possible due to the consideration of the variations in
the value of the radial distances. R,. at the plastic hinges during the formation of the folds.

Equation (:!6) is a function of //I and i. and should be expected to produce two coupled
equations from which //I and H are to be determined; however. the differential operation

Tahle I Expenmental and lheorellcal results for first four consecutive peaks

l'e"k
(Fig. 9)

hrsl
(first outw"rd fold)

Second
(first ill""rd I'llld)

Third
(SCClllld \HI\" " rd I'okil

F"urth
I,eclllld Inward 1'"ld)

Theoretical
Measured critical Peak load

angle (deg) angle (deg) (kN)

" = X4 34.30

7.,\ =-::- 50 49.62 20.44
Eljuation (II

(i, = 6X 69.3X 25.69
Eljuation (10)

'J." = 49 49.62 22.06
Equation (I)

End
shortening Measured Fold tength

(mm) value of mt 2H (mm)

3.321

12.77 0.5X 8.25

19.52 0.5X 7.75

27.265 0.59 8.5

+The thellITtic',,1 \"luc 01' 11/ is 0.65. see eljll (27)
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Table 2. Eccentricities and fold lengths for tubes of different mean diameter
and thickness (D and t)

D(mm): 22.5 23 48.5 49.2
t(mm): 0.5 1.0 1.5 1.6

--_.- --- --- ..- -------

2H Measured 3.17 4.38 8.15 8
(mm) Theory. eqn (30) 4.2 6.0 10.78 Il.l

m Measured 0.60 0.63 0.62 0.59
Theory. eqn (27) 0.65 0.65 0.65 0.65

3601

6(PmIMo)16m = 0 produces eqn (27) which is independent of H and which provides m
directly. The value of m is also independent of the other geometrical parameters, namely R
and t. Experimental measurements shown in Table 2 indicate that the eccentricity factor
appears to be mildly dependent on the relative thickness of a tube. It should be expected
that m also depends on the strain hardening characteristics of the tube material. If a strain
hardening material model is considered, the equivalents of eqns (27) and (28) may become
coupled.

In the present analysis, only the mean crushing load is discussed because the prime
factor of interest is the eccentricity factor. Taking this procedure further and using energy
rate equations instead of energy equations [following Wierzbicki et al. (1992), for example],
the load-<::ompression history during the folding process can be obtained.

The interaction of axial bending and membrane (hoop) stress resultants is not con­
sidered in this paper. A more rigorous analysis of the deformation using yield criteria [see
Andronicou and Walker (1981) and Grzebieta (1990)], shows that, while there is little or
no change in the thickness (with von Mises or with Tresca yield criteria, respectively) in
the outward buckling region of the tube. the thickness of the tube changes in the inward
buckling region. Consideration of such thickness changes produces a more complex
expression for the bending energy dissipated and further complicates the expression for m
and H. To maintain simplicity and to bring out the most salient feature of the problem,
namely the eccentricity factor of Wierzbicki et al.'s model, this complication was felt
unnecessary and hence the interaction effects are not included here.

5. CONCLUSIOI\S

The model proposed by Wierzbicki et al. (1992) for the collapse of a tube into the
concertina mode is re-examined. The strength of their work was the introduction of the
eccentricity factor, m. which. with reference to the tube generator, relates the inward and
the outward parts of the fold. Nevertheless, m was arbitrary and could not be calculated
from their analysis. The present analysis produces a value for m and consequently the
critical angles required for the formation of the inward and outward folds. The present
investigation does not include the analysis related to the initial fold, although some light
has been shed on the development of the first buckle using the experimental observations.
The values of m,):o and Po obtained from the analysis agree well with those obtained from
the tests carefully carried out to measure the critical angles of the inward and outward
folds. Further refinements should be possible with the use of flow rules which indicate the
changes in the thickness at the plastic hinges.
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